skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohseni, Amirsadra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Designing CRISPR single guide RNA (sgRNA) libraries targeting entire kingdoms of life will significantly advance genetic research in diverse and underexplored taxa. Current sgRNA design tools are often species-specific and fail to scale to large, phylogenetically diverse datasets, limiting their applicability to comparative genomics, evolutionary studies, and biotechnology. Here, we present ALLEGRO, a combinatorial optimization algorithm able to design minimal, yet highly effective sgRNA libraries targeting thousands of species. Leveraging integer linear programming, ALLEGRO identified compact sgRNA sets simultaneously targeting several genes of interest for over 2,000 species across the fungal kingdom. We experimentally validated the sgRNAs designed by ALLEGRO inKluyveromyces marxianus, Komagataella phaffii, andYarrowia lipolytica. In addition, we adopted a generalized Cas9-Ribonucleoprotein delivery system coupled with protoplast transformation to extend ALLEGRO’s sgRNA libraries to other untested fungal genomes, such asRhodotorula araucariae. Our experimental results, along with cross-validation, show that ALLEGRO enables efficient CRISPR genome editing, supporting the development of universal sgRNA libraries applicable to entire taxonomic groups. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  2. Abstract High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic underpinnings of engineered and evolved phenotypes. One of the critical challenges in accurately assessing screening outcomes is accounting for the variability in sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening conditions obscure the growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read counts obtained from next-generation sequencing. acCRISPR uses experimentally determined cutting efficiencies for each guide in the library to provide an activity correction to the screening outcomes via calculation of an optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-conventional oleaginous yeastYarrowia lipolyticaand acCRISPR was used to determine a high-confidence set of essential genes for growth under glucose, a common carbon source used for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying relative cellular fitness under high salt conditions to identify genes that were related to salt tolerance. Collectively, this work presents an experimental-computational framework for CRISPR-based functional genomics studies that may be expanded to other non-conventional organisms of interest. 
    more » « less